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Abstract. We construct finite-dimensional irreducible representations of two quantum algebras
related to the generalized Lie algebs&2), introduced by Lyubashenko and Sudbery. We
consider separately the casesgofieneric and; at roots of unity. Some of the representations
have no classical analogue even for gengricSome of the representations have no analogue
to the finite-dimensional representations of the quantized enveldpjiig (2)), while in those

that do there are different matrix elements.

1. Introduction

A number of authors [1-4] have suggested definitions of ‘quantum Lie algebras’, the aim
being to obtain structures which bear the same relation to quantized enveloping algebras as
Lie algebras do to their enveloping algebras. It is of interest to determine the representations
of such quantum Lie algebras, in those cases where a notion of ‘representation’ is defined,
and compare them with the classical representation theory. For generic values of the
complex deformation parameterit is to be expected that the representations will resemble
those of the classical Lie algebras which are deformed into the quantum versions, since the
representation theory of a quantized enveloping algebra is essentially the same as that of the
classical Lie algebra, but the details of this resemblance will help to illuminate the nature
of a quantum Lie algebra. This relationship breaks down ik a root of unity, which

is of much interest in physics, and it is therefore particularly significant to determine the
representations of a quantum Lie algebra in this case.

In this paper we begin such a study by constructing finite-dimensional representations
of the simplest example of the generalized Lie algebras introduced in [4]. A representation
of this algebra, in the sense defined in [4], is nothing but a representation of an associative
algebra, the enveloping algebra of the quantum Lie algebra. This is obtained from a larger
algebra with a central element by imposing a relation giving the central element as a
function of Casimir-like elements. We investigate the representations also of this larger
algebra, which is possibly more natural in the context of generalized Lie algebras, and find
that it has additional one-dimensional representations.

The paper is organized as follows. In section 2 we introduce explicitly the two quantum
algebras that we consider. In sections 3 and 4 we construct finite-dimensional representations
of these algebras for generic valuesqofin sections 5 and 6 we consider the case wien
is a root of unity. Section 7 contains a summary of our results.

§ E-mail address: dobrev@bgearn.acad.bg
| E-mail address: as2@york.ac.uk.
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2. The quantum Lie algebrasl(2),

The generalized Lie algebrsi(2), was introduced in [4], cf also [5-7]. Its enveloping
algebraA = U(sl(2),) is defined by equation (3.5) of [4]. For the purposes of developing
the representation theory it is enough to work with the algeBra& [4]. The algebras is
generated by four generatoKy, X, C with relations:

q°XoX+ — X1 Xo=qCX, (2.12)
g 2XoX_ —X_Xo=—q CX_ (2.10)
X{X_—X_X{=(q+q H(C —2rXo)Xo (2.1c)
CX, = X,C m=0,=+1 (2.1d)

wherex = g — ¢~ 1. The algebraB is related to the locally finite patfE of the simply

connected quantized enveloping aIgeE’ga(sI(Z)). The algebraF was obtained in [4] from
B by putting C equal to a function of the second-order Casimir:

Ca=(q+q HX5+qgX X1 +q ' X X (2.2)
namely,
C?=1+ s Co. (2.3)
q+q7!

For brevity we shall callF the restricted algebra. The enveloping algedreon the other
hand, is obtained by putting = 1 [4].
We shall need a triangular decomposition®f

B=B,®B®B_ (2.4)

whereB. is generated b ., while By is generated by, C. We shall call the abelian Lie

algebraH generated by, C the Cartan subalgebra #f Note that5, is the enveloping

algebra ofH. The same decomposition is used for the algebaith relation (2.3) enforced.
Further we shall analyse algebr8sand F separately.

3. Highest weight representations

Highest weight modules (HWMs) @& are standardly determined by a highest weight vector
vo Which is annihilated by the raising generatoy and on which Cartan generators act by
the corresponding value of the highest weight H*:

X+U0 = 0

3.1)
Hvo = A(H)vg He™H.

We write M = A(Xp), ¢ = A(C).

In particular, we shall be interested in Verma modules g¥efAs in the classical case
a Verma module/* is a HWM of weightA induced from a one-dimensional representation
of a Borel subalgebr&, e.g.B = B, ® By, on the highest weight vector, exg. As vector
spaces we have:

VA= B®svo=B-®uvo= linear spanfv; = X* ® volk € Z.} (3.2)

where we have identifiedzl® vg with vg.
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The action of the generators 6fon the basis oV 2 is given as follows

Xive = % 72(c = AM) (2K, M — g[k]y[k = L),0)ve-a (3.3)
X v = v (3-3)
Xovk = (%M — g*[k] o) v (3.%)
Cv, = cvg (3.1)

where k], = (¢*—¢*)/x. To obtain (3.3), (3.%) we have used the following calculations
which follow from (2.1):

XoX* = X* (¢* X0 — ¢"[k],C) (3.40)
[X4. X¥] = X% 72(C — A Xo)([2K], Xo — q[K] [k — 1],0). (3.40)

As in the classical case the analysis of reducibility of Verma modules is an important
tool in the representation theory. This analysis starts (cf [8]) with the search for singular
vectors. A singular vectos, of a Verma moduleV* is defined as), € V*, v, ¢ Cvp and
it satisfies the following properties (cf, e.g. [8]):

X.v, =0 (3.5)
Hv, = A'(H)v, HeH, A eH. (3.50)

First we note that sinc€ is central its value is the same aswn ¢/ = A'(C) = c. Further,

we proceed to find the possible singular vectors using the fact that they are eigenvectors of
Xo. However, the eigenvectors &fy are X" ® vg, all with different eigenvalues. Thus, a
singular vector will be given by the classical expression (omitting the overall normalization):
vy = X" ® vg for some fixedn € N, and we have:

Xovs =M'v; M’ =N (Xo) =¢"'M —q"[nlq". (3.6)
Finally, we have to impose (3% for which we calculate (using (3):
X vy = X" 1?2 (c — AM)([2n],M — gq[n],[n — 1],¢) ® vo. (3.7)

For the further analysis we suppose that the deformation parampetenot a nontrivial
root of unity. Then there are two possibilities for (3.7) to be zero, and thus, we have two
possibilities to fulfil (3.%):

M = g[n]y[n — 1],c/[2n], (3.8)
c= M. (3.80)

We shall analyse the two possibilities in (3.8) separately since they have very different
implications; moreover, they are incompatible unless M = 0 when they coincide and
which we shall treat as the partial case of (3.8

The first possibility (3.8) (with ¢ £ 0) corresponds to the classical relation between
and the highest weight (obtained forg,c — 1): M = (n — 1)/2. Thus, if we fixn € N
thenv, = X" ® vp is a singular vector whe has the value (38. The shifted weight
A’ corresponds to another Verma modMé  which is the maximal invariant submodule
of V2. The corresponding eigenvalue & is (cf (3.6)):

M' = —q[n],[n + 1],¢/[2n],. (3.9

Note that the Verma modulé”’ does not have a singular vector. Indeed, there i8'roN
such that (3.8) holds for the painM’, n’) replacing(M, n). Also (3.8) cannot hold for
M’ sincec = AM’ will contradict (3.9).
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The factor-moduleL, . = vA/vA is irreducible and finite-dimensional of dimension
n. It has a highest weight vectdt, ¢) such that:

X.|n,c)=0
Hin,c) = A(H)|n, ¢) HeH (3.10)
X"|n,c) =0.

Let us denote by, = X*|n,c),k=0,1,...,n—1, the states of., .. The transformation

rules forw, are:

Yo cf2]4[n) \°
Xy = g% [Ky[n — Ky (=52 ) wia (3.118)
[2n],
X_wp = wia1 k<n-1 (3.1Db)
X_w,.1=0 (31w
C k n
Xowy = 1 [ ]q ([}’l — k]q — ql_n[k + l]q)wk (311(3)
[2n],

Cwy = cwg. (3.11d)

Thus, the vectow,_; is the lowest weight vector aof,, ..
Next we introduce a bilinear form if, . by the formula:

(wj, wp) = (n, ¢| XL X" [n, ¢) (3.12)
where(n, c| is such that(n, c||n, ¢) = 1 and:

(n,c|X_ =0

(n,c|H = A(H)(n, c| HeH (3.13)

(n,clX =0.
Then we obtain

2k
(wj, we) = 85"+ [K]y![n = 1],! ( cl2]qln]y
[n —1—k],! [2n], (3.14)

[k],! = [k],[k — 1], ...[1], [0],! =
Clearly, (3.14) is real-valued for reagl, c. Thus, forg,c € R we can turn (3.12) into a
scalar product and defined the norm of the basis vectors:

k
[wi| = v/ (wg, wi) = qk(kﬂ_")/z‘/ [[];]i[z :kl]]:!! <c[f2]25’:]q> (3.15)

where we have chosen the root that is positive for positive We can also introduce an
orthonormal basis:

1
Uy = ——wy. (3.16)
|wi|
Then we have:
(uj, uk) = (Sjk. (317)
The transformation rules for the basis vectoysare:
cl2],[n
X = ¢ /2 o = 11, el (3.18)

[2n],
X_le = q’”’l_”/z\/[n —-1- k]q[k + 1],1

C[Z]q[n]q

[2n]q Uk+1 (3.18)
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k
Xouy = C[qzi’]"j" (n — K]y — ¢*"Tk + 1],y (3.1&)
Cuk = CUy. (3181)

The above scalar product is invariant under the real f&&mof 5 defined by the
antilinear anti-involution:

o(XT) = XT o(Xo) = Xo w(C) = C. (3.19)

Indeed, the algebraic relations (2.1) are preserved by realg. The B, invariance of the
scalar product means that:

(wj, Xwy) = (w(X)w;, wy) XeB (3.20)

which is automatically satisfied by definition (3.12). (Note that (3.20) defines (,) as the
Shapovalov bilinear form [9].)

Thus, for everyn € N we have constructed-dimensional irreducible representations
(irreps) of B parametrized by: € C, ¢ # 0, with basisw; or uy, (k =0,...,n —1). For
g, c € R these are irreps of the real forff), which are unitary wheg, ¢ > 0.

The second possibility (3488 has no classical analogue. It implies that iand M are
related as in (38 then each vector of the basis &f* is a singular vector. Moreover,
all of them have the same weight sing¢ = M, cf (3.6). This is also clear from the
transformation rules (3.3) whenh= A M:

X, =0 (3.21)
X _ v = vpyq1 (3.21b)
Xovy = My (3.2X)
Cv, = AMuy. (3.21d)

Clearly, we have an infinite sequence of embedded reducible Verma motules

linear spafwi|k € Z,,k > n} forn € Z, asV, D V,;1, the latter being the maximal
invariant submodule of the former. Note thgt is isomorphic to a submodule of al,,

with n > m. Furthermore, because of the coincidence of the weights these modules are
also all isomorphic to each othe¥,, = V,, for all m,n. It is also clear that for every/

there is only one irreducible module, namely the one-dimensibpakE Vv, /V, 1, for any

n. Denoting by|M) the only state inL,, we have for the action on it:

X, |M)=0 (3.22)
X_|M)=0 (3.22)
XolM) = M|M) (3.2%)
C|M) = AM|M). (3.22)

Note that the above one-dimensional irrep is different from the one-dimensignal
Indeed, although the action &f. is the same, the ratio of eigenvalues@fto Xy here is
A, while there it is—[2],/q.

4. Highest weight representations of the restricted algebra

The highest weight representations of the restricted alg&beae obtained from those of
B by imposing the relation (2.3). In particular, there is the following relation between the
values of the Cartan generators:

M?> M
=1+ <—2+c—>. 4.1)
q q
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This relation has to be imposed on all formulae of the previous section. There are no
essential consequences of this for generic Verma modules. For the reducible Verma modules
there are more interesting consequences. First we notice that the reducibility condition (3.8
is incompatible with (4.1), and thus there would be no special one-dimensional irreps like
Ly, cf (3.22). So it remains to consider the combination of the reducibility conditioa)3.8
with (4.1) from which we obtain that:

€[2n], M- gln]y[n — 1],c _ eqln — 1, e=%+1 (4.2

T 2,0, [2n], 21,

In this case the analogue of (3.9) is:

M = —eqln +11,/12],. (4.3)

Let us denote the finite-dimensional representationsFolby I:n,e and the basis byiy,
k=0,...,n— 1. The transformation rules are:

X = q* " [Klg[n — kg1 (4.49)
X_ﬁ}k = ﬁ)k+1 k<n-1 (443)
X_ iy 1=0 (4.4
k
Xoty = o ([n — k], — q* "k + 11,) (4.4)
(2],
. €[2n], .
Cwy = . 4.4d
Wi 2.0, Wi (4.4d)

Further, the analogues of (3.14) and (3.15) are:

k(k-+1—n) % “s)

5 — k], [n — 1],!
[Wi| = v/ (W, Wi) = qk(kH_")/z[k]q!‘/ H- (4.6)

We can also introduce an orthonormal basis:

1 . - .
— Wi (), ug) = 8 4.7)
[wi|

(W, wy) = 8jkq

U
for which the transformation rules are:

X it = g2 [[Kly[n — K]giii—a (4.89)

X_ iy = g2 [In — 1— k], [k + 1], dix 11 (4.80)
k

Xoiiy = =1 ([n — k], — q*"[k + 1], )ik (4.80)
21,

_— €[2n], . 4.8

= 21,0, @&

Thus, for everyn € N we have constructed-dimensional irreps ofF parametrized by
e = +1, with basesu; or i (k =0,...,n—1).
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5. Highest weight representations at roots of unity

Here we consider representations of the algeBran the case when the deformation
parameter is at roots of unity. More precisely, first we consider the cases yfhen
a primitive Nth root of unity: ¢ = €/¥ N € N+ 1. Then we have:

], = singx/N
= Tsing /N

In such cases there are additional reducibility conditions coming from (3.7) beside}, (3.8
(3.80). For this we rewrite (38) in a more general fashion:

(5.1)

M[2n), = q[n]y[n — 1],c. (3.84)

We note that from (5.1) it follows thatN], = [2N], = 0, so (3.8') is satisfied for

n — N. Thus,v" = X" ® vg is a singular vector independently of the highest weight
A. Similar to the analysis done in [10] for the quantized enveloping algebyds/(2))

all vV = xrVN @ v, for p € N are singular vectors. We denote the Verma modules they
realize byV,, p € Z., Vo = V2. These are embedded reducible Verma modules V,,1

with the same highest weight. Indeed, for anpr using (3.6) withn — pN we have:

M =q** M — g"N[pN],c = M.

The further analysis depends on whether there are additional singular vectors besides
those just displayed. There are four cases.

We start with the case wheM, ¢ do not satisfy either (348 or (3.8). We also suppose
thatc % 0 when N is even Then there are no additional singular vectors and there is only
one irreducibleN-dimensional HWML, v = V,/V,.1 (for any p), parametrized by all
pairs M, ¢ not satisfying (3.8), (3.8). The action of the generators 8fon the basis of

LAy, Which we denote by, (k =0,..., N — 1), is given as follows
Xt = g% 72(c = AM)([2K]g M — q[K]y[k — 1],0) 0k 1 (5.29)
X_ U = Vg k<N-1 (5.2D)
X Oy_1=0 (5.2v")
Xotk = (q*M — ¢*[K]40)0 (5.20)
Coy = ciy. (5.2d)

However, unlike the Drinfel’d-Jimbo case, these finite-dimensional representations are not
unitarizable, which is easily seen if one considers the analogue of the bilinear form (3.12).

Next we consider the case wha, ¢ satisfy (3.&) for somen € N,n < N. We also
suppose that # 0 (for any N). First we note thak < N is not a restriction, since then
(3.8) holds also for allz + pN, p € Z. Indeed, we have:

q[n + pN]q[n + pN — 1]qc/[2(n + pN)]q = Q[n]q[n - 1]q COSZ(ﬂP)C/[Zn]q cogq2mp)
= q[n]y[n — 1],¢/[2n], = M. (5.3)

Thus, we have another infinite series of singular vectdts = X"V @ vq for pEZy.

They realize reducible Verma modules which we denot&pyp €Zy (\75 is the analogue
of V4" introduced in the non-root-of-unity case, but here it is reducible). They all have the

T We recall that although the quantized enveloping algeltfagy)) were introduced for arbitrary simple Lie
algebrasg in [11,12], the example ol,(sl(2)) was introduced in [13] as an algebra and in [14] as a Hopf
algebra.
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same highest weight’ determined byM’, ¢ with M’ given by (3.6). Indeed, substituting
n by n + pN does not change the value bf':

q2(n+pN)M o qn+pN[n + pN]qC — anM _ qn+pNerrip[n]q COSTL’p)C
=q¢*"M —q"[n],c=M' (5.4)

Of course, after substitutingf with its value from (3.8) we obtain the expression far’
in (3.9). We have the following infinite embedding chain:

VA=VoD Vo ViD VD (5.5)

where all embeddings are non-composite: the embeddfi‘pgs \71; are realized by singular
vectors: X" ®uv,. v, being the highest weight vector &f, while the embeddingg; > V.,
are realized by singular vector&™ " @ v/, v, being the highest weight vector 69;;

Now, factorizing each reducible Verma module by its maximal invariant submodule we
obtain that for eaclh € N, n < N there are two finite-dimensional irreps parametrized by
ceC,c#0: L,y = ‘7,,/\7[; (for any p) which is (v — n)-dimensional. However, it turns
out that the irreps from one series are isomorphic to those of the oﬂjlg\g: = Ly_un-
Indeed, note that the value of’ for the Verma moduleﬁ’p/ given by (3.9) should be obtained
(for consistency) also from the formula fa with n substituted byN — n (since this is
the reducibility condition with respect to the non-composite singular veetor’ @ v,) and
indeed this is the case:

q[N —n]y[N —n —1],¢/[2(N —n)]y = —gq[n — N]y[n + 1 — N],c/[2(n — N)],
= —q[nl,[n + 1], co(x N)/[2n], cos2 N)
= —gq[nlyln + 1],c/[2n], = M'.

Furthermore, the transformation rules foy y are the same as fdr, ., cf (3.11), while the
transformation rules foL, , are obtained from (3.11) by substituting— N — n.

Thus, we are left with one series of finite-dimensional irréps,.

Next, we consider the case wha#, ¢ satisfy (3.8) for arbitraryc. Actually, nothing
is changed from the non-root-of-unity case since the relevant formulae (3.21) and (3.22) are
not changed.

Finally, we consider the case whehis even and- = 0. Let N = N/2 € N. In these
cases there are additional reducibility conditions coming froma(R.8ndeed, from (5.1)
it follows that [2V]; = 0 and [V]; # 0. However, ifc = 0 then (3.8’) is again satisfied.
Thus, the vectod” = X" ®uvq is a singular vector independently of the valuelf Similar

to the first analysis of section 5 also &ft" = X”" @, for p € N are singular vectors. Note

that for p even these are the singular vectors that we already hifte= vV, p = p/2.
We denote the Verma modules they realizeﬁ;yp € 7., Vo= V2. These are embedded
reducible Verma moduleé’,, D \7,,+1 with the same value ao#/ up to sign. Indeed, for any
V, using (3.6) withh — pN we have:M’ = g%V M — q"[pN],c = (~1)’ M. Certainly,
for even p these are Verma modules’, = V;.

As above the further analysis depends on whetMer satisfy some of (38), (3.8).
However, sincec = 0 then the only additional possibility is that algé = 0, which is
a partial case of (31, which was previously considered. Thus, further, we suppose that
M, ¢ do not satisfy either of (38, (3.8) and thatM # 0.

Then there are no additional singular vectors bes&fg’s Then for eachM # O there
is only one irreducible HWML , 5 = V,,/V,11 (for any p) which is N-dimensional. The
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action of the generators @ on the basis oLM,,;,, which we denote by, (k =0, ..., N-1),
is given as follows
X O = —q%2A[2k], M0y _4 (5.69)
X_0p = Dpsn k<N-1 (5.60)
X_05_,=0 (5.6p")
Xolx = g% My (5.60)
Cv, =0. (5.6d)

Note that if N is odd it seems that formulae (5.6) may be obtained from (5.2)Vfardd
andc = 0 by the substitutionv — N. However, this is not the same irrep since with the
same replacement the parametehere becomes™®" — €"/V while the parametey here

is eri/2N

6. Highest weight representations at roots of unit of the restricted algebra

Here we consider representations of the restricted algElimahe case when the deformation
parameter is at a root of unity. We start with the cage:z €'V, N € N+ 1, and so (3.8)
holds. The analysis is as for the algel#ebut imposing the relation (4.1), i.e. combining
the considerations of the previous two sections.

We start with the case wheM, ¢ do not satisfy (3.8), i.e. (4.2) does not hold. We
also suppose that=£ 0 whenN is even Then there is only one irreduciblg-dimensional
HWM parametrized byM, ¢ related by (4.1), which irrep we denote ly, y. For the
transformation rules we can use formulae (5.2) with (4.1) imposed.

Next we consider the case whah, ¢ satisfy (3.8) andc # 0, Here we should be more
careful so we replace by n + pN with n < N. Combining the reducibility condition
(3.82) with (4.1) we first obtain that:

o ot pNT [l 61)
[212[n + pN17  [217[n]7
Then we recover (4.2) and (4.3) far< N which means that we have the same situation
as for the unrestricted algebra at roots of unity. Thus, for eaehN, n < N ande = £1
there is a finite-dimensional irrerf;,l,é,N which isn-dimensional. The transformation rules
for L, .y are the same as in the non-root-of-unity case, cf (4.4).

Finally, we consider the case whevi is even andc = 0. Let N = N/2 € N. As
for the unrestricted algebra there are additional reducibility conditions, i.e. again the vector
vN = XN ® v is a singular vector. However, because of (4.1) the valug/éfis fixed:

M2 = G232 M = €ig/a €=+l (6.2)

Otherwise, the analysis goes through and there is only one irredu%ibimgnsional HWM
L, 5 parametrized by. The action of the generators 6fon the basis of., 5, which we

denote byd,(k =0, ..., N — 1), is given as follows
G%12k];
X0, =1 [K i (6.30)
X_0, = Dpyq k<N-1 (6.%)

X, =0 (6.30")
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i~ 2%+1
A €l A
Xov, = qk Uy (6.%)

ci, = 0, (6.30)

The crucial feature of these two irreps is that they do not have a classical lingt-ferl
(obtained forN — 00).

7. Summary

Below by g genericwe shall understand thatis a nonzero complex nhumber which is not
a nontrivial root of unity. We have constructed the following finite-dimensional irreps of
the algebrad3 and F.

For the algebras:

eL,.,neN,ceC,c#0,q generic, dim_, . = n, cf (3.11), (3.18);

e Ly, MeC,c=AM, q arbitrary, dimL,, = 1, cf (3.22);

e Lyn,NeN+1g=¢€"N M,c e C arbitrary not satisfying (38, (3.8), c # 0
for N even, dimL, y = N, cf (5.2);

eL,.n.n,NeNn<N,qg= e/N ceC,c#£0, dimL, .y = n, cf (3.11);

oLy N=2Ne2N g=€"N MecC,M+#0,c=0dmL, ;=N,cf (6.3).

For the algebra3, with ¢ € R, g # O:

eL,.,neN,ceR,c#0,dimL, . =n, cf (3.11), (3.18); unitary fog, ¢ > 0.

For the algebrar:

e L,..,neN, e==+1 g generic, dimL, . = n, cf (4.4), (4.8);

e Lyn.N eN+1q =¢€"N M, c e C related by (4.1) and not satisfying (3)8
(3.80), ¢ #£ 0 for N even, dimL, y = N, cf (5.2);

° lN,,l,E,N,n, NeN,n<N,g=¢€"/N e=+41, dimlN,,l,g,N =n, cf (4.4);

oLy N=2Ne2Ng=e/" dmL_g=N,cf (6.3).

Of the above irreps only, . andf,,“ have classicall(2), su(2) counterparts. For fixed
n for both cases this is the-dimensional HWM ofsl(2) or su(2) with the conjugatiorw.
The latter HWM is obtained frond,, ., Z,l,e, resp., forg,c — 1,q,¢ — 1, resp.

Of the above irreps all buty, L, 5, I:E_,;, have analogues in the representation theory
[10] of the quantized enveloping algelig (s((2)). However, the matrix elements there are
given by expressions different from ours.
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