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Abstract. We construct finite-dimensional irreducible representations of two quantum algebras
related to the generalized Lie algebrasl(2)q introduced by Lyubashenko and Sudbery. We
consider separately the cases ofq generic andq at roots of unity. Some of the representations
have no classical analogue even for genericq. Some of the representations have no analogue
to the finite-dimensional representations of the quantized envelopingUq(sl(2)), while in those
that do there are different matrix elements.

1. Introduction

A number of authors [1–4] have suggested definitions of ‘quantum Lie algebras’, the aim
being to obtain structures which bear the same relation to quantized enveloping algebras as
Lie algebras do to their enveloping algebras. It is of interest to determine the representations
of such quantum Lie algebras, in those cases where a notion of ‘representation’ is defined,
and compare them with the classical representation theory. For generic values of the
complex deformation parameterq it is to be expected that the representations will resemble
those of the classical Lie algebras which are deformed into the quantum versions, since the
representation theory of a quantized enveloping algebra is essentially the same as that of the
classical Lie algebra, but the details of this resemblance will help to illuminate the nature
of a quantum Lie algebra. This relationship breaks down ifq is a root of unity, which
is of much interest in physics, and it is therefore particularly significant to determine the
representations of a quantum Lie algebra in this case.

In this paper we begin such a study by constructing finite-dimensional representations
of the simplest example of the generalized Lie algebras introduced in [4]. A representation
of this algebra, in the sense defined in [4], is nothing but a representation of an associative
algebra, the enveloping algebra of the quantum Lie algebra. This is obtained from a larger
algebra with a central element by imposing a relation giving the central element as a
function of Casimir-like elements. We investigate the representations also of this larger
algebra, which is possibly more natural in the context of generalized Lie algebras, and find
that it has additional one-dimensional representations.

The paper is organized as follows. In section 2 we introduce explicitly the two quantum
algebras that we consider. In sections 3 and 4 we construct finite-dimensional representations
of these algebras for generic values ofq. In sections 5 and 6 we consider the case whenq

is a root of unity. Section 7 contains a summary of our results.
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2. The quantum Lie algebra sl(2)q

The generalized Lie algebrasl(2)q was introduced in [4], cf also [5–7]. Its enveloping
algebraA ≡ U(sl(2)q) is defined by equation (3.5) of [4]. For the purposes of developing
the representation theory it is enough to work with the algebrasB,F [4]. The algebraB is
generated by four generator:X0, X±, C with relations:

q2X0X+ −X+X0 = qCX+ (2.1a)

q−2X0X− −X−X0 = −q−1CX− (2.1b)

X+X− −X−X+ = (q + q−1)(C − λX0)X0 (2.1c)

CXm = XmC m = 0,±1 (2.1d)

whereλ ≡ q − q−1. The algebraB is related to the locally finite partF of the simply
connected quantized enveloping algebraŪq(sl(2)). The algebraF was obtained in [4] from
B by puttingC equal to a function of the second-order Casimir:

C2 = (q + q−1)X2
0 + qX−X+ + q−1X+X− (2.2)

namely,

C2 = 1+ λ2

q + q−1
C2. (2.3)

For brevity we shall callF the restricted algebra. The enveloping algebraA, on the other
hand, is obtained by puttingC = 1 [4].

We shall need a triangular decomposition ofB:

B = B+ ⊗ B0⊗ B− (2.4)

whereB± is generated byX±, whileB0 is generated byX0, C. We shall call the abelian Lie
algebraH generated byX0, C the Cartan subalgebra ofB. Note thatB0 is the enveloping
algebra ofH. The same decomposition is used for the algebraF with relation (2.3) enforced.

Further we shall analyse algebrasB andF separately.

3. Highest weight representations

Highest weight modules (HWMs) ofB are standardly determined by a highest weight vector
v0 which is annihilated by the raising generatorX+ and on which Cartan generators act by
the corresponding value of the highest weight3 ∈ H∗:

X+v0 = 0

Hv0 = 3(H)v0 H ∈ H. (3.1)

We writeM ≡ 3(X0), c ≡ 3(C).
In particular, we shall be interested in Verma modules overF . As in the classical case

a Verma moduleV 3 is a HWM of weight3 induced from a one-dimensional representation
of a Borel subalgebrãB, e.g.B̃ = B+⊗B0, on the highest weight vector, e.g.v0. As vector
spaces we have:

V 3 ∼= B ⊗B̃ v0 = B− ⊗ v0 = linear span{vk ≡ Xk− ⊗ v0|k ∈ Z+} (3.2)

where we have identified 1B ⊗ v0 with v0.
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The action of the generators ofB on the basis ofV 3 is given as follows

X+vk = q2k−2(c − λM)([2k]qM − q[k]q [k − 1]qc)vk−1 (3.3a)

X−vk = vk+1 (3.3b)

X0vk = (q2kM − qk[k]qc)vk (3.3c)

Cvk = cvk (3.3d)

where [k]q ≡ (qk−q−k)/λ. To obtain (3.3a), (3.3c) we have used the following calculations
which follow from (2.1):

X0X
k
− = Xk−(q2kX0− qk[k]qC) (3.4a)

[X+, Xk−] = Xk−1
− q2k−2(C − λX0)([2k]qX0− q[k]q [k − 1]qC). (3.4b)

As in the classical case the analysis of reducibility of Verma modules is an important
tool in the representation theory. This analysis starts (cf [8]) with the search for singular
vectors. A singular vectorvs of a Verma moduleV 3 is defined asvs ∈ V 3, vs /∈ Cv0 and
it satisfies the following properties (cf, e.g. [8]):

X+vs = 0 (3.5a)

Hvs = 3′(H)vs H ∈ H,3′ ∈ H∗. (3.5b)

First we note that sinceC is central its value is the same as onv0: c′ ≡ 3′(C) = c. Further,
we proceed to find the possible singular vectors using the fact that they are eigenvectors of
X0. However, the eigenvectors ofX0 areXn− ⊗ v0, all with different eigenvalues. Thus, a
singular vector will be given by the classical expression (omitting the overall normalization):
vs = Xn− ⊗ v0 for some fixedn ∈ N, and we have:

X0vs = M ′vs M ′ ≡ 3′(X0) = q2nM − qn[n]qc. (3.6)

Finally, we have to impose (3.5a) for which we calculate (using (3.4b)):

X+vs = Xn−1
− q2n−2(c − λM)([2n]qM − q[n]q [n− 1]qc)⊗ v0. (3.7)

For the further analysis we suppose that the deformation parameterq is not a nontrivial
root of unity. Then there are two possibilities for (3.7) to be zero, and thus, we have two
possibilities to fulfil (3.5a):

M = q[n]q [n− 1]qc/[2n]q (3.8a)

c = λM. (3.8b)

We shall analyse the two possibilities in (3.8) separately since they have very different
implications; moreover, they are incompatible unlessc = M = 0 when they coincide and
which we shall treat as the partial case of (3.8b).

The first possibility (3.8a) (with c 6= 0) corresponds to the classical relation betweenn

and the highest weight3 (obtained forq, c→ 1): M = (n− 1)/2. Thus, if we fixn ∈ N
thenvs = Xn− ⊗ v0 is a singular vector whenM has the value (3.8a). The shifted weight
3′ corresponds to another Verma moduleV 3

′
which is the maximal invariant submodule

of V 3. The corresponding eigenvalue ofX0 is (cf (3.6)):

M ′ = −q[n]q [n+ 1]qc/[2n]q . (3.9)

Note that the Verma moduleV 3
′

does not have a singular vector. Indeed, there is non′ ∈ N
such that (3.8a) holds for the pair(M ′, n′) replacing(M, n). Also (3.8b) cannot hold for
M ′ sincec = λM ′ will contradict (3.9).
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The factor-moduleLn,c ∼= V 3/V 3′ is irreducible and finite-dimensional of dimension
n. It has a highest weight vector|n, c〉 such that:

X+|n, c〉 = 0

H |n, c〉 = 3(H)|n, c〉 H ∈ H
Xn−|n, c〉 = 0.

(3.10)

Let us denote bywk ≡ Xk−|n, c〉, k = 0, 1, . . . , n−1, the states ofLn,c. The transformation
rules forwk are:

X+wk = q2k−n[k]q [n− k]q

(
c[2]q [n]q

[2n]q

)2

wk−1 (3.11a)

X−wk = wk+1 k < n− 1 (3.11b)

X−wn−1 = 0 (3.11b′)

X0wk = cqk[n]q
[2n]q

([n− k]q − q1−n[k + 1]q)wk (3.11c)

Cwk = cwk. (3.11d)

Thus, the vectorwn−1 is the lowest weight vector ofLn,c.
Next we introduce a bilinear form inLn,c by the formula:

(wj ,wk) ≡ 〈n, c|Xj+Xk−|n, c〉 (3.12)

where〈n, c| is such that〈n, c‖n, c〉 = 1 and:

〈n, c|X− = 0

〈n, c|H = 3(H)〈n, c| H ∈ H
〈n, c|Xn+ = 0.

(3.13)

Then we obtain

(wj ,wk) = δjkqk(k+1−n) [k]q ![n− 1]q !

[n− 1− k]q !

(
c[2]q [n]q

[2n]q

)2k

[k]q ! ≡ [k]q [k − 1]q . . . [1]q [0]q ! ≡ 1.

(3.14)

Clearly, (3.14) is real-valued for realq, c. Thus, forq, c ∈ R we can turn (3.12) into a
scalar product and defined the norm of the basis vectors:

|wk| ≡
√
(wk,wk) = qk(k+1−n)/2

√
[k]q ![n− 1]q !

[n− 1− k]q !

(
c[2]q [n]q

[2n]q

)k
(3.15)

where we have chosen the root that is positive for positivec, q. We can also introduce an
orthonormal basis:

uk ≡ 1

|wk|wk. (3.16)

Then we have:

(uj , uk) = δjk. (3.17)

The transformation rules for the basis vectorsuk are:

X+uk = qk−n/2
√

[k]q [n− k]q
c[2]q [n]q

[2n]q
uk−1 (3.18a)

X−uk = qk+1−n/2√[n− 1− k]q [k + 1]q
c[2]q [n]q

[2n]q
uk+1 (3.18b)
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X0uk = cqk[n]q
[2n]q

([n− k]q − q1−n[k + 1]q)uk (3.18c)

Cuk = cuk. (3.18d)

The above scalar product is invariant under the real formBr of B defined by the
antilinear anti-involution:

ω(X±) = X∓ ω(X0) = X0 ω(C) = C. (3.19)

Indeed, the algebraic relations (2.1) are preserved byω for realq. TheBr invariance of the
scalar product means that:

(wj ,Xwk) = (ω(X)wj ,wk) X ∈ B (3.20)

which is automatically satisfied by definition (3.12). (Note that (3.20) defines (,) as the
Shapovalov bilinear form [9].)

Thus, for everyn ∈ N we have constructedn-dimensional irreducible representations
(irreps) ofB parametrized byc ∈ C, c 6= 0, with basiswk or uk, (k = 0, . . . , n − 1). For
q, c ∈ R these are irreps of the real formBr , which are unitary whenq, c > 0.

The second possibility (3.8b) has no classical analogue. It implies that ifc andM are
related as in (3.8b) then each vector of the basis ofV 3 is a singular vector. Moreover,
all of them have the same weight sinceM ′ = M, cf (3.6). This is also clear from the
transformation rules (3.3) whenc = λM:

X+vk = 0 (3.21a)

X−vk = vk+1 (3.21b)

X0vk = Mvk (3.21c)

Cvk = λMvk. (3.21d)

Clearly, we have an infinite sequence of embedded reducible Verma modulesVn =
linear span{vk|k ∈ Z+, k > n} for n ∈ Z+ as Vn ⊃ Vn+1, the latter being the maximal
invariant submodule of the former. Note thatVn is isomorphic to a submodule of allVm
with n > m. Furthermore, because of the coincidence of the weights these modules are
also all isomorphic to each other:Vn ∼= Vm for all m, n. It is also clear that for everyM
there is only one irreducible module, namely the one-dimensionalLM ∼= Vn/Vn+1, for any
n. Denoting by|M〉 the only state inLM we have for the action on it:

X+|M〉 = 0 (3.22a)

X−|M〉 = 0 (3.22b)

X0|M〉 = M|M〉 (3.22c)

C|M〉 = λM|M〉. (3.22d)

Note that the above one-dimensional irrep is different from the one-dimensionalL1,c.
Indeed, although the action ofX± is the same, the ratio of eigenvalues ofC to X0 here is
λ, while there it is−[2]q/q.

4. Highest weight representations of the restricted algebra

The highest weight representations of the restricted algebraF are obtained from those of
B by imposing the relation (2.3). In particular, there is the following relation between the
values of the Cartan generators:

c2 = 1+ λ2

(
M2

q2
+ cM

q

)
. (4.1)



6640 V K Dobrev and A Sudbery

This relation has to be imposed on all formulae of the previous section. There are no
essential consequences of this for generic Verma modules. For the reducible Verma modules
there are more interesting consequences. First we notice that the reducibility condition (3.8b)
is incompatible with (4.1), and thus there would be no special one-dimensional irreps like
LM , cf (3.22). So it remains to consider the combination of the reducibility condition (3.8a)
with (4.1) from which we obtain that:

c = ε[2n]q
[2]q [n]q

M = q[n]q [n− 1]qc

[2n]q
= εq[n− 1]q

[2]q
ε = ±1. (4.2)

In this case the analogue of (3.9) is:

M ′ = −εq[n+ 1]q/[2]q . (4.3)

Let us denote the finite-dimensional representations ofF by L̃n,ε and the basis byw̃k,
k = 0, . . . , n− 1. The transformation rules are:

X+w̃k = q2k−n[k]q [n− k]qw̃k−1 (4.4a)

X−w̃k = w̃k+1 k < n− 1 (4.4b)

X−w̃n−1 = 0 (4.4b′)

X0w̃k = εqk

[2]q
([n− k]q − q1−n[k + 1]q)w̃k (4.4c)

Cw̃k = ε[2n]q
[2]q [n]q

w̃k. (4.4d)

Further, the analogues of (3.14) and (3.15) are:

(w̃j , w̃k) = δjkqk(k+1−n) [k]q ![n− 1]q !

[n− 1− k]q !
(4.5)

|w̃k| ≡
√
(w̃k, w̃k) = qk(k+1−n)/2[k]q !

√
[k]q ![n− 1]q !

[n− 1− k]q !
. (4.6)

We can also introduce an orthonormal basis:

ũk ≡ 1

|w̃k| w̃k (ũj , ũk) = δjk (4.7)

for which the transformation rules are:

X+ũk = qk−n/2
√

[k]q [n− k]q ũk−1 (4.8a)

X−ũk = qk+1−n/2√[n− 1− k]q [k + 1]q ũk+1 (4.8b)

X0ũk = εqk

[2]q
([n− k]q − q1−n[k + 1]q)ũk (4.8c)

Cũk = ε[2n]q
[2]q [n]q

ũk. (4.8d)

Thus, for everyn ∈ N we have constructedn-dimensional irreps ofF parametrized by
ε = ±1, with basesw̃k or ũk(k = 0, . . . , n− 1).
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5. Highest weight representations at roots of unity

Here we consider representations of the algebraB in the case when the deformation
parameter is at roots of unity. More precisely, first we consider the cases whenq2 is
a primitiveN th root of unity: q = eπ i/N ,N ∈ N+ 1. Then we have:

[x]q = sinπx/N

sinπ/N
. (5.1)

In such cases there are additional reducibility conditions coming from (3.7) besides (3.8a),
(3.8b). For this we rewrite (3.8a) in a more general fashion:

M[2n]q = q[n]q [n− 1]qc. (3.8a′)

We note that from (5.1) it follows that [N ]q = [2N ]q = 0, so (3.8a′) is satisfied for
n → N . Thus, vNs = XN− ⊗ v0 is a singular vector independently of the highest weight
3. Similar to the analysis done in [10] for the quantized enveloping algebra† Uq(sl(2))
all vpNs = XpN ⊗ v0 for p ∈ N are singular vectors. We denote the Verma modules they
realize byṼp, p ∈ Z+, Ṽ0 ≡ V 3. These are embedded reducible Verma modulesṼp ⊃ Ṽp+1

with the same highest weight3. Indeed, for anyṼp using (3.6) withn → pN we have:
M ′ = q2pNM − qpN [pN ]qc = M.

The further analysis depends on whether there are additional singular vectors besides
those just displayed. There are four cases.

We start with the case whenM, c do not satisfy either (3.8a) or (3.8b). We also suppose
that c 6= 0 whenN is even. Then there are no additional singular vectors and there is only
one irreducibleN -dimensional HWML3,N ∼= Ṽp/Ṽp+1 (for any p), parametrized by all
pairsM, c not satisfying (3.8a), (3.8b). The action of the generators ofB on the basis of
L3,N , which we denote bỹvk(k = 0, . . . , N − 1), is given as follows

X−ṽk = q2k−2(c − λM)([2k]qM − q[k]q [k − 1]qc)ṽk−1 (5.2a)

X−ṽk = ṽk+1 k < N − 1 (5.2b)

X−ṽN−1 = 0 (5.2b′)
X0ṽk = (q2kM − qk[k]qc)ṽk (5.2c)

Cṽk = cṽk. (5.2d)

However, unlike the Drinfel’d–Jimbo case, these finite-dimensional representations are not
unitarizable, which is easily seen if one considers the analogue of the bilinear form (3.12).

Next we consider the case whenM, c satisfy (3.8a) for somen ∈ N, n < N . We also
suppose thatc 6= 0 (for anyN ). First we note thatn < N is not a restriction, since then
(3.8a) holds also for alln+ pN,p ∈ Z. Indeed, we have:

q[n+ pN ]q [n+ pN − 1]qc/[2(n+ pN)]q = q[n]q [n− 1]q cos2(πp)c/[2n]q cos(2πp)

= q[n]q [n− 1]qc/[2n]q = M. (5.3)

Thus, we have another infinite series of singular vectorsv
′pN
s = Xn+pN− ⊗ v0 for p ∈ Z+.

They realize reducible Verma modules which we denote byṼ ′p, p ∈ Z+ (Ṽ ′0 is the analogue
of V 3

′
introduced in the non-root-of-unity case, but here it is reducible). They all have the

† We recall that although the quantized enveloping algebrasUq(g)) were introduced for arbitrary simple Lie
algebrasg in [11, 12], the example ofUq(sl(2)) was introduced in [13] as an algebra and in [14] as a Hopf
algebra.
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same highest weight3′ determined byM ′, c with M ′ given by (3.6). Indeed, substituting
n by n+ pN does not change the value ofM ′:

q2(n+pN)M − qn+pN [n+ pN ]qc = q2nM − qn+pNeπ ip[n]q cos(πp)c

= q2nM − qn[n]qc = M ′. (5.4)

Of course, after substitutingM with its value from (3.8a) we obtain the expression forM ′

in (3.9). We have the following infinite embedding chain:

V 3 ≡ Ṽ0 ⊃ Ṽ ′0 ⊃ Ṽ1 ⊃ Ṽ ′1 ⊃ · · · (5.5)

where all embeddings are non-composite: the embeddingsṼp ⊃ Ṽ ′p are realized by singular

vectors:Xn−⊗vp, vp being the highest weight vector ofṼp, while the embeddings̃V ′p ⊃ Ṽp+1

are realized by singular vectors:XN−n− ⊗ v′p, v′p being the highest weight vector of̃V ′p.
Now, factorizing each reducible Verma module by its maximal invariant submodule we

obtain that for eachn ∈ N, n < N there are two finite-dimensional irreps parametrized by
c ∈ C, c 6= 0: Ln,N ∼= Ṽp/Ṽ ′p (for anyp) which is (N − n)-dimensional. However, it turns
out that the irreps from one series are isomorphic to those of the other:L′n,N ∼= LN−n,N .

Indeed, note that the value ofM ′ for the Verma modules̃V ′p given by (3.9) should be obtained
(for consistency) also from the formula forM with n substituted byN − n (since this is
the reducibility condition with respect to the non-composite singular vectorXN−n− ⊗v′p) and
indeed this is the case:

q[N − n]q [N − n− 1]qc/[2(N − n)]q = −q[n−N ]q [n+ 1−N ]qc/[2(n−N)]q
= − q[n]q [n+ 1]q cos2(πN)/[2n]q cos(2πN)

= − q[n]q [n+ 1]qc/[2n]q = M ′.
Furthermore, the transformation rules forLn,N are the same as forLn,c, cf (3.11), while the
transformation rules forL′n,N are obtained from (3.11) by substitutingn→ N − n.

Thus, we are left with one series of finite-dimensional irrepsLn,N .
Next, we consider the case whenM, c satisfy (3.8b) for arbitraryc. Actually, nothing

is changed from the non-root-of-unity case since the relevant formulae (3.21) and (3.22) are
not changed.

Finally, we consider the case whenN is even andc = 0. Let Ñ = N/2 ∈ N. In these
cases there are additional reducibility conditions coming from (3.8a′). Indeed, from (5.1)
it follows that [2Ñ ] q̃ = 0 and [Ñ ] q̃ 6= 0. However, ifc = 0 then (3.8a′) is again satisfied.

Thus, the vector̂vÑs = XÑ−⊗v0 is a singular vector independently of the value ofM. Similar

to the first analysis of section 5 also allv̂pÑs = XpÑ− ⊗v0 for p ∈ N are singular vectors. Note

that forp even these are the singular vectors that we already have:v̂
pÑ
s = vp̃Ns , p̃ = p/2.

We denote the Verma modules they realize byV̂p, p ∈ Z+, V̂0 ≡ V 3. These are embedded
reducible Verma moduleŝVp ⊃ V̂p+1 with the same value ofM up to sign. Indeed, for any

V̂p using (3.6) withn→ pÑ we have:M ′ = q2pÑM − qpÑ [pÑ ]qc = (−1)pM. Certainly,
for evenp these are Verma modules:̂Vp = Vp̃.

As above the further analysis depends on whetherM, c satisfy some of (3.8a), (3.8b).
However, sincec = 0 then the only additional possibility is that alsoM = 0, which is
a partial case of (3.8b), which was previously considered. Thus, further, we suppose that
M, c do not satisfy either of (3.8a), (3.8b) and thatM 6= 0.

Then there are no additional singular vectors besidesv̂
pÑ
s . Then for eachM 6= 0 there

is only one irreducible HWMLM,Ñ ∼= V̂p/V̂p+1 (for anyp) which is Ñ -dimensional. The



Representations of the generalized Lie algebrasl(2)q 6643

action of the generators ofB on the basis ofLM,Ñ , which we denote bŷvk(k = 0, . . . , Ñ−1),
is given as follows

X+v̂k = −q2k−2λ[2k]qM
2v̂k−1 (5.6a)

X−v̂k = v̂k+1 k < Ñ − 1 (5.6b)

X−v̂Ñ−1 = 0 (5.6b′)

X0v̂k = q2kMv̂k (5.6c)

Cv̂k = 0. (5.6d)

Note that if Ñ is odd it seems that formulae (5.6) may be obtained from (5.2) forN odd
andc = 0 by the substitutionN → Ñ . However, this is not the same irrep since with the
same replacement the parameterq there becomes eπ i/N → eπ i/Ñ while the parameterq here
is eπ i/2Ñ .

6. Highest weight representations at roots of unit of the restricted algebra

Here we consider representations of the restricted algebraF in the case when the deformation
parameter is at a root of unity. We start with the case:q = eπ iN,N ∈ N+1, and so (3.8a′)
holds. The analysis is as for the algebraB but imposing the relation (4.1), i.e. combining
the considerations of the previous two sections.

We start with the case whenM, c do not satisfy (3.8a), i.e. (4.2) does not hold. We
also suppose thatc 6= 0 whenN is even. Then there is only one irreducibleN -dimensional
HWM parametrized byM, c related by (4.1), which irrep we denote bỹL3,N . For the
transformation rules we can use formulae (5.2) with (4.1) imposed.

Next we consider the case whenM, c satisfy (3.8c) andc 6= 0, Here we should be more
careful so we replacen by n + pN with n < N . Combining the reducibility condition
(3.8a) with (4.1) we first obtain that:

c2 = [2(n+ pN)]2
q

[2]2
q [n+ pN ]2

q

= [2n]2
q

[2]2
q [n]2

q

. (6.1)

Then we recover (4.2) and (4.3) forn < N which means that we have the same situation
as for the unrestricted algebra at roots of unity. Thus, for eachn ∈ N, n < N andε = ±1
there is a finite-dimensional irrep:̃Ln,ε,N which isn-dimensional. The transformation rules
for L̃n,ε,N are the same as in the non-root-of-unity case, cf (4.4).

Finally, we consider the case whenN is even andc = 0. Let Ñ = N/2 ∈ N. As
for the unrestricted algebra there are additional reducibility conditions, i.e. again the vector
vÑs = XÑ− ⊗ v0 is a singular vector. However, because of (4.1) the value ofM2 is fixed:

M2 = −q̃2/λ2 M = εiq̃/λ ε = ±1. (6.2)

Otherwise, the analysis goes through and there is only one irreducibleÑ -dimensional HWM
L̃ε,Ñ parametrized byε. The action of the generators ofB on the basis of̃Lε,Ñ , which we

denote byv̂′k(k = 0, . . . , Ñ − 1), is given as follows

X+v̂′k =
q̃2k[2k] q̃

λ
v̂′k−1 (6.3a)

X−v̂′k = v̂′k+1 k < Ñ − 1 (6.3b)

X−v̂′
Ñ−1
= 0 (6.3b′)
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X0v̂
′
k =

εiq̃2k+1

λ
v̂′k (6.3c)

Cv̂′k = 0. (6.3d)

The crucial feature of these two irreps is that they do not have a classical limit forq̃ → 1
(obtained forN →∞).

7. Summary

Below by q genericwe shall understand thatq is a nonzero complex number which is not
a nontrivial root of unity. We have constructed the following finite-dimensional irreps of
the algebrasB andF .

For the algebraB:
• Ln,c, n ∈ N, c ∈ C, c 6= 0, q generic, dimLn,c = n, cf (3.11), (3.18);
• LM,M ∈ C, c = λM, q arbitrary, dimLM = 1, cf (3.22);
• L3,N,N ∈ N + 1, q = eπ i/N ,M, c ∈ C arbitrary not satisfying (3.8a), (3.8b), c 6= 0

for N even, dimL3,N = N , cf (5.2);
• Ln,c,N , n,N ∈ N, n < N, q = eπ i/N , c ∈ C, c 6= 0, dimLn,c,N = n, cf (3.11);
• LM,Ñ , N = 2Ñ ∈ 2N, q = eπ i/N ,M ∈ C,M 6= 0, c = 0, dimLM,Ñ = Ñ , cf (6.3).
For the algebraBr with q ∈ R, q 6= 0:
• Ln,c, n ∈ N, c ∈ R, c 6= 0, dimLn,c = n, cf (3.11), (3.18); unitary forq, c > 0.
For the algebraF :
• L̃n,ε, n ∈ N, ε = ±1, q generic, dimLn,c = n, cf (4.4), (4.8);
• L̃3,N ,N ∈ N + 1, q = eπ i/N ,M, c ∈ C related by (4.1) and not satisfying (3.8a),

(3.8b), c 6= 0 for N even, dimL3,N = N , cf (5.2);
• L̃n,ε,N , n,N ∈ N, n < N, q = eπ i/N , ε = ±1, dim L̃n,ε,N = n, cf (4.4);
• L̃ε,Ñ , N = 2Ñ ∈ 2N, q = eπ i/N , dim L̃ε,Ñ = Ñ , cf (6.3).

Of the above irreps onlyLn,c andL̃n,ε have classicalsl(2), su(2) counterparts. For fixed
n for both cases this is then-dimensional HWM ofsl(2) or su(2) with the conjugationω.
The latter HWM is obtained fromLn,c, L̃n,ε , resp., forq, c→ 1, q, ε → 1, resp.

Of the above irreps all butLM,LM,Ñ , L̃ε,Ñ have analogues in the representation theory
[10] of the quantized enveloping algebraUq(sl(2)). However, the matrix elements there are
given by expressions different from ours.
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